Public

e PeckShield

SMART CONTRACT AUDIT REPORT

for

Thena Finance

Prepared By: Xiaomi Huang

PeckShield
March 25, 2023

1/25 PeckShield Audit Report #: 2023-056

contact@peckshield.com

Public

Document Properties

Client Thena Finance
Title Smart Contract Audit Report
Target Thena Finance

Version 1.0

Author Xuxian Jiang
Auditors Xiaotao Wu, Patrick Liu, Xuxian Jiang
FEVIENWEGHOAE Patrick Liu

AVSI oA Xuxian Jiang
Classification il

Version Info

Version Date Author(s) | Description
1.0 March 25, 2023 | Xuxian Jiang | Final Release
1.0-rc March 22, 2023 | Xuxian Jiang | Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Xiaomi Huang
+86 183 5897 7782
contact@peckshield.com

2/25 PeckShield Audit Report #: 2023-056

Public

Contents
1 Introduction 4
1.1 About Thena. 4
1.2 About PeckShield 5
1.3 Methodology 5
1.4 Disclaimer e 7
2 Findings 9
2.1 Summary . ..o 9
22 Key Findings 10
3 Detailed Results 11
3.1 Incorrect Delegate/Voting Balance Accounting in VotingEscrow 11
3.2 Improper VotingEscrow Query in RewardsDistributor 13
3.3 Revisited Proposal State For Cancellation in Governor 14
3.4 Accommodation of Non-ERC20-Compliant Tokens 15
3.5 Improved Airdrop Logic in AirdropClaim::setUserInfo() 18
3.6 Suggested Adherence Of Checks-Effects-Interactions Pattern 19
3.7 Killed Gauges Still Eligible For Rewards, 20
3.8 Trust Issue of Admin Keys 21
4 Conclusion 23
References 24

3/25 PeckShield Audit Report #: 2023-056

Public

1 Introduction

Given the opportunity to review the design document and related source code of the Thena protocol,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence

of several issues related to either security or performance. This document outlines our audit results.

1.1 About Thena

Thena is designed to allow low-cost, low-slippage trades on uncorrelated or tightly correlated assets.
It is in essence a DEX that is built starting from Solidly/Velodrome with a unique amM. The DEX
is compatible with all the standard features as popularized by Uniswapv2 with a number of novel
improvements, including price oracles without upkeeps, a new curve (x3*y + xy* = k) for efficient
stable swaps, as well as a built-in NFT-based voting mechanism and associated token emissions. The

basic information of audited contracts is as follows:

Table 1.1; Basic Information of Thena Finance

Name | Thena Finance
Website | https://thena.fi/
Type | Smart Contract
Language | Solidity
Audit Method | Whitebox
Latest Audit Report | March 25, 2023

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

e https://github.com/ThenafiBNB/THENA-Contracts.git (52d42ca)

4/25 PeckShield Audit Report #: 2023-056

Public

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

e https://github.com/ThenafiBNB/THENA-Contracts.git (07106e7)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram

(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High Medium
3]
f Medium Medium
E

Low Medium

High Medium Low
Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact, and can be accordingly classified
into four categories, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with

a severity category. For one check item, if our tool or analysis does not identify any issue, the

5/25 PeckShield Audit Report #: 2023-056

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category

Basic Coding Bugs

Check Item |
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

6/25

PeckShield Audit Report #: 2023-056

Public

contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with

respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

7/25 PeckShield Audit Report #: 2023-056

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category

Configuration

Summary

Weaknesses in this category are typically introduced during

the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/25

PeckShield Audit Report #: 2023-056

Public

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the Thena protocol
smart contracts. During the first phase of our audit, we study the smart contract source code and
run our in-house static code analyzer through the codebase. The purpose here is to statically identify
known coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We
further manually review business logics, examine system operations, and place DeFi-related aspects

under scrutiny to uncover possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical
High
Medium

Low

Informational
Total

| oW O | O

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of

them are in Section 3.

9/25 PeckShield Audit Report #: 2023-056

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 3 medium-severity

vulnerabilities and 5 low-severity vulnerabilities.

Table 2.1: Key Audit Findings

Status

Resolved

ID Category
PVE-001 Low Incorrect Delegate/Voting Balance Ac- | Business Logic
counting in VotingEscrow
PVE-002 Low Improper VotingEscrow Query in Re- | Coding Practices | Resolved
wardsDistributor
PVE-003 Low Revisited Proposal State For Cancella- | Business Logic Resolved
tion in Governor
PVE-004 Low Accommodation of Non-ERC20- | Business Logic Resolved
Compliant Tokens
PVE-005 | Medium | Improved Airdrop Logic in Airdrop- | Business Logic Resolved
Claim::setUserInfo()
PVE-006 Low Suggested Adherence Of Checks Effects | Business Logic Resolved
Interactions Pattern
PVE-007 | Medium | Killed Gauges Still Eligible For Rewards Business Logic Resolved
PVE-008 | Medium | Trust Issue Of Admin Keys Security Features | Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3

for details.

10/25 PeckShield Audit Report #: 2023-056

1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Public

3 Detailed Results

3.1 Incorrect Delegate/Voting Balance Accounting in

VotingEscrow
e |D: PVE-001 e Target: VotingEscrow
e Severity: Low e Category: Business Logic [7]
o Likelihood: Low e CWE subcategory: CWE-841 [4]
e Impact: High
Description

The Thena protocol has a core VotingEscrow contract that escrows the governance tokens in the form
of an ERC-721 NFT. It also has a built-in delegation feature that allows a user to delegate the voting
power to another user. In the process of reviewing the delegation feature, we notice the current
implementation is flawed.

In particular, we show below the logic of a core routine that implements the delegation feature.
As the name indicates, this _moveAl1Delegates() routine records the changes of the owner's NFTs
as part of the delegate operation. However, it comes to our attention that the previously delegated
NFTs are being duplicated in srcRepNew when nextSrcRepNum = srcRepNum-1, which could seriously
affect the voting balance calculation. Note another routine _moveTokenDelegates() shares the same
issue.

function _moveAllDelegates(
address owner,
address srcRep,
address dstRep

) intermnal {

// You can only re-delegate what you own

if (srcRep != dstRep) {
if (srcRep != address(0)) {
uint32 srcRepNum = numCheckpoints[srcRepl];

uint [] storage srcRep0ld = srcRepNum > 0

11/25 PeckShield Audit Report #: 2023-056

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363

Public

Recommendation

delegated.

? checkpoints[srcRep]l[srcRepNum - 1].tokenIds
checkpoints [srcRep] [0].tokenIds;
uint32 nextSrcRepNum = _findWhatCheckpointToWrite (srcRep);

uint [] storage srcRepNew = checkpoints[srcRep][nextSrcRepNum].tokenIds;

// All the same except what owner owns
for (uint i = 0; i < srcRepOld.length; i++) {
uint tId = srcRep0ld[il;
if (idToOwner [tId] !'= owner) {
srcRepNew.push (tId);

}
¥
numCheckpoints [srcRep] = srcRepNum + 1;
if (dstRep != address(0)) {

uint32 dstRepNum = numCheckpoints[dstRepl;
uint [] storage dstRep0ld = dstRepNum > 0O
? checkpoints[dstRep] [dstRepNum - 1].tokenIds
checkpoints [dstRep] [0].tokenIds;

uint32 nextDstRepNum = _findWhatCheckpointToWrite (dstRep);

uint [] storage dstRepNew = checkpoints[dstRep]l[
nextDstRepNum

].tokenlds;

uint ownerTokenCount = ownerToNFTokenCount [owner];

require (
dstRep0ld.length + ownerTokenCount <= MAX_DELEGATES,
"dstRep would have too many tokenIds"
)
// All the same
for (uint i = 0; i < dstRep0ld.length; i++) {
uint tId = dstRep0ld[il;
dstRepNew.push(tId);

}

// Plus all that’s owned

for (uint i = 0; i < ownerTokenCount; i++) {
uint tId = ownerToNFTokenIdList [owner][il];
dstRepNew.push(tId);

}

numCheckpoints [dstRep] = dstRepNum + 1;

LiSth1g 3.1 VotingEscrow: : _moveAllDelegates()

Revise the above delegate logic to properly record the set of NFTs being

Status This issue has been resolved as the team confirms the above delegate logic is not used

12/25

PeckShield Audit Report #: 2023-056

135
136
137
138
139
140

141

Public

anymore.

3.2 Improper VotingEscrow Query in RewardsDistributor

e |ID: PVE-002 e Target: RewardsDistributor
e Severity: Low e Category: Coding Practices [6]
o Likelihood: Low e CWE subcategory: CWE-1126 [1]
e Impact: Low
Description

To incentivize the long-time stakers with inflation, the Thena protocol has a built-in RewardsDistributor
contract to calculate inflation and adjust emission balances accordingly. While reviewing the current
logic, we notice three different routines can be improved.

To elaborate, we show below one example ve_for_at() routine. This routine is proposed to
calculate the voting power of the given NFT at the specific timestamp. It comes to our attention that
the resulting int256(pt.bias - pt.slope * (int128(int256(_timestamp - pt.ts)))) (line 140) may be
negative. However, when it is negative, the type cast to uint makes it positive, which leads to an
incorrect calculation of voting power (in this case, the resulting voting power should be 0.). The
same issue is also applicable to two other routines _checkpoint_total_supply() and _claim().

function ve_for_at(uint _tokenId, uint _timestamp) external view returns (uint) {

address ve = voting_escrow;

uint max_user_epoch = IVotingEscrow(ve).user_point_epoch(_tokenId);

uint epoch = _find_timestamp_user_epoch(ve, _tokenId, _timestamp, max_user_epoch
)

IVotingEscrow.Point memory pt = IVotingEscrow(ve).user_point_history(_tokenId,
epoch) ;

return Math.max(uint (int256 (pt.bias - pt.slope * (int128(int256(_timestamp - pt.
ts))))), 0);

Listh1g 3.2 RewardsDistributor::ve_for_at()

Recommendation Revise the above three routines to properly compute the user’s voting power.

Status This issue has been fixed in the following commit: 07106e7.

13/25 PeckShield Audit Report #: 2023-056

https://github.com/ThenafiBNB/THENA-Contracts/commit/07106e7

374
375
376
377
378
379
380
381

383
384

385
386
387
389

391
392

Public

3.3 Reuvisited Proposal State For Cancellation in Governor

e |ID: PVE-003 e Target: Governor, L2Governor

e Severity: Low e Category: Business Logic [7]

e Likelihood: Low o CWE subcategory: CWE-841 [4]
e |Impact: Low

Description

The Thena protocol has a built-in governance to facilitate the protocol operation and management.
In particular, each protocol has its own lifecycle and its associated protocol state. While reviewing
the possible protocol states, we notice the current protocol cancellation operation makes use of an
incorrect protocol state.

To elaborate, we show below the related code snippet _cancel(), which validates the current state
not in Canceled, Expired, and Executed. Our analysis shows that the state of Expired here should be
replaced with Defeated — as the current state() routine never returns the Expired state.

function _cancel(
address [] memory targets,
uint256 [] memory values,
bytes [] memory calldatas,
bytes32 descriptionHash
) intermal virtual returns (uint256) {
uint256 proposalld = hashProposal (targets, values, calldatas, descriptionHash);
ProposalState status = state(proposalld);

require (
status != ProposalState.Canceled && status != ProposalState.Expired &&
status != ProposalState.Executed,
"Governor: proposal not active"
)5

_proposals [proposalld].canceled = true;
emit ProposalCanceled(proposalld);

return proposalld;

Listing 3.3: L2Governor::_cancel()

Moreover, another related routine execute() is invoked to execute the protocol actions. We no-
tice one SpeCiﬁC validation — require(status == ProposalState.Succeeded || status == ProposalState
.Queued) (line 301), which potentially checks the Queued state. However, the state() routine never

returns the Queued state.

14/25 PeckShield Audit Report #: 2023-056

291
292
293
294
295
296
297

299
300
301
302
303
304

306
308
309
310

312
313

Public

function execute(
address [] memory targets,
uint256 [] memory values,
bytes [] memory calldatas,
bytes32 descriptionHash
) public payable virtual override returns (uint256) {

uint256 proposalld = hashProposal(targets, values, calldatas, descriptionHash);
ProposalState status = state(proposalld);
require (
status == ProposalState.Succeeded status == ProposalState.Queued,
"Governor: proposal not successful"
)
_proposals [proposalld].executed = true;
emit ProposalExecuted (proposalld);
_beforeExecute (proposalld, targets, values, calldatas, descriptionHash);
_execute (proposalld, targets, values, calldatas, descriptionHash);

_afterExecute (proposalld, targets, values, calldatas, descriptionHash);

return proposalld;

Listing 3.4: L2Governor: :execute()

Recommendation Revise the above two routines to properly examine possible protocol states.

Status This issue has been fixed in the following commit: 07106e7.

3.4 Accommodation of Non-ERC20-Compliant Tokens

e |D: PVE-004 e Target: Multiple Contracts

e Severity: Low e Category: Business Logic [7]

o Likelihood: Low e CWE subcategory: CWE-841 [4]
e Impact: High

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow
the specification or have additional functionalities beyond the specification. In the following, we
examine the transfer() routine and related idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., uspT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require (! ((_value '= 0)

&% (allowed[msg.sender] [_spender] !'= 0))). This specific requirement essentially indicates the need

15/25 PeckShield Audit Report #: 2023-056

https://github.com/ThenafiBNB/THENA-Contracts/commit/07106e7

Public

of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve ()/
transferFrom() race condition (https://github.com/ethereum/EIPs/issues/204tissuecomment-263524729).

194 /%%

195 * @dev Approve the passed address to spend the specified amount of tokens on behalf
of msg.sender.

196 * @param _spender The address which will spend the funds.

197 * @param _value The amount of tokens to be spent.

198 */

199 function approve(address _spender, uint _value) public onlyPayloadSize (2 * 32) {

201 // To change the approve amount you first have to reduce the addresses®

202 // allowance to zero by calling ‘approve(_spender, 0)°¢ if it is not

203 // already O to mitigate the race condition described here:

204 // https://github.com/ethereum/EIPs/issues/20#issuecomment -263524729

205 require (! ((_value !'= 0) && (allowed[msg.sender][_spender] != 0)));

207 allowed [msg.sender] [_spender] = _value;

208 Approval (msg.sender , _spender, _value);

209 ¥

Listing 3.5: USDT Token Contract

Because of that, a normal call to approve () is suggested to use the safe version, i.e., safeApprove ()
, In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,

there is a safe version of transfer() as well, i.e., safeTransfe().

38 ALk

39 * @dev Deprecated. This function has issues similar to the ones found in
40 * {IERC20-approvel}, and its usage is discouraged.

41 *

42 * Whenever possible, use {safelncreaseAllowance} and

43 * {safeDecreaseAllowance} instead.

44 */

45 function safeApprove(

46 IERC20 token,

47 address spender,

48 uint256 value

49) intermal {

50 // safelApprove should only be called when setting an initial allowance,
51 // or when resetting it to zero. To increase and decrease it, use

52 // ’safelncreaseAllowance’ and ’safeDecreaseAllowance’

53 require (

54 (value == 0) (token.allowance(address(this), spender) == 0),

55 "SafeERC20: approve from non-zero to non-zero allowance"

56 DE:

57 _callOptionalReturn(token, abi.encodeWithSelector (token.approve.selector,

spender, value));

16/25 PeckShield Audit Report #: 2023-056

Public

58 }

Listing 3.6: safeERC20: :safeApprove ()

In the following, we show the setUserInfo() routine from the AirdropClaim contract. If the uspT
token is supported as token, the unsafe version of token.approve(ve, 0) (line 122) may revert as there
is no return value in the USDT token contract's approve() implementation (but the IERC20 interface
expects a return value)!

92 function setUserInfo(address _who, address _to, uint256 _amount) external onlyMerkle

nonReentrant returns(bool status) {

94 require (_who != address(0), ’addr 07);

95 require(_to != address(0), ’addr 0’);

96 require (_amount > 0, ’amnt 0°);

97 require (usersFlag[_who] == false, ’!flag’);

98 require (init, ’not init’);

101 uint256 _vestedAmount = _amount * VESTED_SHARE / PRECISION;

102 uint256 _theInstantAmount = _amount * LINEAR_DISTRO / PRECISION;
103 uint256 _thelLockedLinearAmount = _theInstantAmount;

104 uint256 _tokenPerSec = _thelLockedLinearAmount * PRECISION / DISTRIBUTION_PERIOD;
106 UserInfo memory _user = UserInfo ({

107 totalAmount: _amount,

108 initAmount: _theInstantAmount,

109 vestedAmount: _vestedAmount,

110 lockedAmount: _thelLockedLinearAmount,

111 tokenPerSec: _tokenPerSec,

112 lastTimestamp: startTimestamp,

113 claimed: _thelInstantAmount + _vestedAmount,

114 to: _to

115 s

117 users [_who] = _user;

118 usersFlag[_who] = true;

120 // send out init amount

121 token.safeTransfer(_to, _theInstantAmount);

122 token.approve(ve, 0);

123 token.approve(ve, _vestedAmount);

124 IVotingEscrow(ve).create_lock_for(_vestedAmount, 2 * 364 * 86400 , _who);
126 status = true;

127 }

LiSth1g 3.7: AirdropClaim: :setUserInfo()

Note this issue is also applicable to other routines in AirdropClaimTheNFT and NFTSalesSplitter
contracts. For the safeApprove() support, there is a need to approve twice: the first time resets the

allowance to zero and the second time approves the intended amount.

17/25 PeckShield Audit Report #: 2023-056

92

94
95
96
97
98

101
102
103
104

106
107
108
109
110
111

Public

Recommendation =~ Accommodate the above-mentioned idiosyncrasy about ERC20-related

approve () /transfer () /transferFrom().

Status This issue has been confirmed and the team clarifies that the supported tokens are
expected to have the full ERC20-compliance.

3.5 Improved Airdrop Logic in AirdropClaim::setUserInfo()

e |ID: PVE-005 e Target: AirdropClaim

e Severity: Medium e Category: Business Logic [7]

o Likelihood: Medium e CWE subcategory: CWE-841 [4]
e Impact: Medium

Description

The Thena protocol supports the airdrop mechanism that divides the airdropped amount into three
parts: initAmount, vestedAmount, and lockedAmount. \We notice the current logic to compute these
three parts can be improved.

In the following, we show the implementation of the related setUserInfo() routine. This routine
properly computes the initAmount and vestedAmount (lines 101 — 102), but not lockedAmount (line
103). A correct assignment to lockedAmount should be the following: wint256 _theLockedLinearAmount

= _amount - _vestedAmount -_theInstantAmount.

function setUserInfo(address _who, address _to, uint256 _amount) external onlyMerkle

nonReentrant returns(bool status) {

require (_who != address(0), ’addr 0’);
require(_to != address(0), ’addr 0’);
require (_amount > 0, ’amnt 0’);
require (usersFlag[_who]l == false, ’!flag’);
require (init, ’not init’);
uint256 _vestedAmount = _amount * VESTED_SHARE / PRECISION;
uint256 _thelInstantAmount = _amount * LINEAR_DISTRO / PRECISION;
uint256 _thelLockedLinearAmount = _thelnstantAmount;
uint256 _tokenPerSec = _thelLockedLinearAmount * PRECISION / DISTRIBUTION_PERIOD;
UserInfo memory _user = UserInfo ({
totalAmount: _amount,
initAmount: _thelnstantAmount,
vestedAmount: _vestedAmount,
lockedAmount: _thelLockedLinearAmount,
tokenPerSec: _tokenPerSec,

18/25 PeckShield Audit Report #: 2023-056

112
113
114
115

117
118

120
121
122
123
124

126
127

Public

lastTimestamp: startTimestamp,

claimed: _theInstantAmount + _vestedAmount,
to: _to

)8

users [_who] = _user;

usersFlag[_who] = true;

// send out init amount
token.safeTransfer (_to, _theInstantAmount);

token.approve (ve, 0);

token.approve(ve, _vestedAmount);
IVotingEscrow(ve).create_lock_for(_vestedAmount, 2 * 364 * 86400 , _who);
status = true;

Listing 3.8: AirdropClaim: :setUserInfo()

Recommendation Improve the above airdrop Logic by computing the right 1ockedAmount.

Status This issue has been fixed in the following commit: 07106e7.

3.6 Suggested Adherence Of Checks-Effects-Interactions

Pattern
e |ID: PVE-006 e Target: MerkleTree/MerkleTreeTHENFT
e Severity: Low e Category: Time and State [8]
o Likelihood: Low e CWE subcategory: CWE-663 [3]
e Impact: Low

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the pao [13] exploit, and the recent Uniswap/Lendf.Me hack [12].

We notice there are occasions where the checks-effects-interactions principle is violated. Using

the PairFees as an example, the withdrawStakingFees() function (see the code snippet below) is

19/25 PeckShield Audit Report #: 2023-056

https://github.com/ThenafiBNB/THENA-Contracts/commit/07106e7

95
96
97
98
99
100
101
102
103
104
105

Public

provided to externally call a contract to execute the intended operation. However, the invocation
of an external contract requires extra care in avoiding the above re-entrancy. For example, the
interaction with the external contract (line 52 or 56) start before effecting the update on the internal
state (line 53 or 57), hence violating the principle. In this particular case, if the external contract
has certain hidden logic that may be capable of launching re-entrancy via the same entry function.

function withdrawStakingFees (address recipient) external {

require (msg.sender == pair);

if (toStake0 > 0){
_safeTransfer (token0, recipient, toStakeO);
toStake0 = 0;

}

if (toStakel > 0){
_safeTransfer (tokenl, recipient, toStakel);
toStakel = 0;

LiSth1g 3.0: PairFees: :withdrawStakingFees ()

Recommendation Apply necessary reentrancy prevention by following the checks-effects-
interactions principle or utilizing the necessary nonReentrant modifier to block possible re-entrancy.

Note that MerkleTree/MerkleTreeTHENFT contracts share the same issue.

Status This issue has been fixed in the following commit: 07106e7.

3.7 Killed Gauges Still Eligible For Rewards

e |D: PVE-007 e Target: VoterV2_1

e Severity: Medium e Category: Business Logic [7]

o Likelihood: Low e CWE subcategory: CWE-841 [4]
e Impact: High

Description

The Thena protocol creates a gauge for the supported pool and the created gauge can be killed or
revived based on the community needs. While reviewing the current gauge-killing logic, we notice a
killed gauge is still eligible for rewards!

To elaborate, we show below the related xil1GaugeTotally(). While it properly resets multiple
storage states for a killed gauge, it does not remove the associated supplyIndex and weights, making

it still eligible for rewards.

20/25 PeckShield Audit Report #: 2023-056

https://github.com/ThenafiBNB/THENA-Contracts/commit/07106e7

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

93
94
95
96
97
98
99
100
101

Public

function killGaugeTotally(address _gauge) external {

require (msg.sender == emergencyCouncil, "not emergency council");
require(isAlive [_gauge], "gauge already dead");
isAlive[_gauge] = false;

claimable [_gaugel] = 0;

address _pool = poolForGauge[_gaugel;
internal_bribes [_gauge] = address(0);
external_bribes[_gauge] = address(0);
gauges [_pool] = address (0);
poolForGauge [_gauge] = address (0);
isGauge [_gauge] = false;
isAlive[_gauge] = false;

claimable [_gaugel = 0;

emit GaugeKilled(_gauge);

Listing 3.10: voterV2_1::killGaugeTotally()

Recommendation Revise the above logic to properly remove a current gauge.

Status This issue has been fixed in the following commit: 07106e7.

3.8 Trust Issue of Admin Keys

e |ID: PVE-008 e Target: Multiple Contracts

e Severity: Medium e Category: Security Features [5]
o Likelihood: Medium e CWE subcategory: CWE-287 [2]
e Impact: Medium

Description

In the Thena protocol, there is a privileged owner account that plays a critical role in governing and
regulating the system-wide operations (e.g., configuring various parameters and adding new allowed
tokens). It also has the privilege to control or govern the flow of assets managed by this protocol.
Our analysis shows that the privileged account needs to be scrutinized. In the following, we examine
the privileged account and the related privileged accesses in current contracts.

///@notice set distribution address (should be GaugeProxyL2)

function setDistribution(address _distribution) external onlyOwner {

require(_distribution != address(0), "zero addr");
require (_distribution != DISTRIBUTION, "same addr");
DISTRIBUTION = _distribution;

///@notice set gauge rewarder address

function setGaugeRewarder (address _gaugeRewarder) external onlyOwner {

21/25 PeckShield Audit Report #: 2023-056

https://github.com/ThenafiBNB/THENA-Contracts/commit/07106e7

102
103
104
105
106
107
108
109
110
111
112

Public

require (_gaugeRewarder != address(0), "zero addr");
require (_gaugeRewarder != gaugeRewarder, "same addr");
gaugeRewarder = _gaugeRewarder;

///@notice set extra rewarder pid

function setRewarderPid(uint256 _pid) external onlyOwner {

require(_pid >= 0, "zero"
require (_pid != rewarderPid, "same pid");
rewarderPid = _pid;

Listing 3.11: Example Privileged Functions in caugev2

Note that if the privileged owner account is a plain EOA account, this may be worrisome and pose
counter-party risk to the exchange users. A multi-sig account could greatly alleviate this concern,
though it is still far from perfect. Specifically, a better approach is to eliminate the administration key
concern by transferring the role to a community-governed DAO. In the meantime, a timelock-based
mechanism can also be considered as mitigation.

Moreover, it should be noted that current contracts may have the support of being deployed
behind a proxy. And there is a need to properly manage the proxy-admin privileges as they fall in

this trust issue as well.

Recommendation Promptly transfer the privileged account to the intended pao-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-

tended trustless nature and high-quality distributed governance.

Status This issue has been resolved as the team makes use of the Thena Multisig to act as the

privileged owner.

22/25 PeckShield Audit Report #: 2023-056

Public

4 Conclusion

In this audit, we have analyzed the design and implementation of the Thena protocol, which is designed
to allow low-cost, low-slippage trades on uncorrelated or tightly correlated assets. It is in essence a
DEX that is built starting from solidly/Velodrome with a unique aMM. The DEX is compatible with all
the standard features as popularized by Uniswapv2 with a number of novel improvements, including
price oracles without upkeeps, a new curve (x’y + xy® = k) for efficient stable swaps, as well as a
built-in NFT-based voting mechanism and associated token emissions. The current code base is well
structured and neatly organized. Those identified issues are promptly confirmed and addressed.
Meanwhile, we need to emphasize that solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in

scope/coverage.

23/25 PeckShield Audit Report #: 2023-056

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.
[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/
data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/
254 . html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/
840.html.

[8] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

24/25 PeckShield Audit Report #: 2023-056

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk

Rating_ Methodology.
[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

[12] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

Opeckshield /uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[13] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

25/25 PeckShield Audit Report #: 2023-056

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About Thena
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Incorrect Delegate/Voting Balance Accounting in VotingEscrow
	Improper VotingEscrow Query in RewardsDistributor
	Revisited Proposal State For Cancellation in Governor
	Accommodation of Non-ERC20-Compliant Tokens
	Improved Airdrop Logic in AirdropClaim::setUserInfo()
	Suggested Adherence Of Checks-Effects-Interactions Pattern
	Killed Gauges Still Eligible For Rewards
	Trust Issue of Admin Keys

	Conclusion
	References

